Introduction
The complete set of instructions for making an organism is called its genome. It contains the master blueprint for all cellular structures and activities for the lifetime of the cell or organism. Found in every nucleus of a persons many trillions of cells, the human genome consists of tightly coiled threads of deoxyribonucleic acid (DNA) and associated protein molecules, organized into structures called chromosomes (Fig. 1).
If unwound and tied together, the strands of DNA would stretch more than 5 feet but would be only 50 trillionths of an inch wide. For each organism, the components of these slender threads encode all the information necessary for building and maintaining life, from simple bacteria to remarkably complex human beings. Understanding how DNA performs this function requires some knowledge of its structure and organization.
In humans, as in other higher organisms, a DNA molecule consists of two strands that wrap around each other to resemble a twisted ladder whose sides, made of sugar and phosphate molecules, are connected by rungs of nitrogen-containing chemicals called bases. Each strand is a linear arrangement of repeating similar units called nucleotides, which are each composed of one sugar, one phosphate, and a nitrogenous base (Fig. 2). Four different bases are pr esent in DNAadenine (A), thymine (T), cytosine (C), and guanine (G). The particular order of the bases arranged along the sugar- phosphate backbone is called the DNA sequence; the sequence specifies the exact genetic instructions required to create a particular organism with its own unique traits.
The two DNA strands are held together by weak bonds between the bases on each strand, forming base pairs (bp). Genome size is usually stated as the total number of base pairs; the human genome contains roughly 3_billion bp (Fig. 3).
Each time a cell divides into two daughter cells, its full genome is duplicated; for humans and other complex organisms, this duplication occurs in the nucleus. During cell division the DNA molecule unwinds and the weak bonds between the base pairs break, allowing the strands to separate. Each strand directs the synthesis of a complementary new strand, with free nucleotides matching up with their complementary bases on each of the separated strands. Strict base-pairing rules are adhered toadenine will pair only with thymine (an A-T pair) and cytosine with guanine (a C-G pair). Each daughter cell receives one old and one new DNA strand (Figs. 1 and 4). The cells adherence to these base-pairing rules ensures that the new strand is an exact copy of the old one. This minimizes the incidence of errors (mutations) that may greatly affect the resulting organism or its offspring.
The protein-coding instructions from the genes are transmitted indirectly through messenger ribonucleic acid (mRNA), a transient intermediary molecule similar to a single strand of DNA. For the information within a gene to be expressed, a complementary RNA strand is produced (a process called transcription) from the DNA template in the nucleus. This mRNA is moved from the nucleus to the cellular cytoplasm, where it serves as the template for protein synthesis. The cells protein- synthesizing machinery then translates the codons into a string of amino acids that will constitute the protein molecule for which it codes (Fig. 5). In the laboratory, the mRNA molecule can be isolated and used as a template to synthesize a complementary DNA (cDNA) strand, which can then be used to locate the corresponding genes on a chromosome map. The utility of this st rategy is described in the section on physical mapping, p. 201.
Chromosomes can be seen under a light microscope and, when stained with certain dyes, reveal a pattern of light and dark bands reflecting regional variations in the amounts of A and T vs G and C. Differences in size and banding pattern allow the 24 chromosomes to be distinguished from each other, an analysis called a karyotype. A few types of major chromosomal abnormalities, including missing or extra copies of a chromosome or gross breaks and rejoinings (translocations), can be detected by microscopic examination; Downs syndrome, in which an individual's cells contain a third copy of chromosome 21, is diagnosed by karyotype analysis (Fig. 6). Most changes in DNA, however, are too subtle to be detected by this technique and require molecular analysis. These subtle DNA abnormalities (mutations) are responsible for many inherited diseases such as cystic fibrosis and sickle cell anemia or may predispose an individual to cancer, major psychiatric illnesses, and other complex diseases.
Next Section: Mapping and Sequencing the Human Genome
Go to the Table of Contents