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Chapter 10 Multiple QTL

Introduction

In the last lecture you found out about regression and maximum likelihood methods
for detecting QTL. The extension to cater for multiple interacting QTL is best
illustrated on the basis of analysis by regression.

The Gametic Relationship Matrix approach

In the fullest implementation of this approach, we first set up a symmetrical matrix
that contains a row and column for each gametic haplotype (2 per animal, one from
each parent) in the population of animals that we have. Such a matrix is specific to
the chromosomal region of current interest. Each element in this matrix is then the
probability of identity-by-descent for the representations of this region (one
representation per gamete). Here are simple examples of this “Gametic Relationship
Matrix” (GRM). Notice that without marker information we must resort to smple
segregation probabilities — however, marker information allows us to be more
‘surgical’ in alocating identity-by-descent probabilities:

The Gametic Relationship Matrix

Dad Mum Dad Mum
A B A C
1 2 3 4 1 2 3 4
Prog. Prog
A C
5 6 5 6
Dad Mum Prog. Dad Mum Prog.
Site | 1 213 4[5 6 Site | 1 2|3 415 6
Dad 1 1 0|0 0|5 0 Dad 1 1 00 O 9 0
2 0 1]0 01]5 0 2 0 1]0 o0 1 0
Mum B 0 0|1 0|0 5 Mum B 0 O 1 0|0 1
4 0O 0]0O 1]0 5 4 0 0[O0 110 9
Prog| 5 (5 5[0 01 O Prog| 5 (9 1|0 01 O
6 0 0o0]5 5]0 1 6 0 0.1 9]0 1

Figure. (From Kinghorn and Clarke (1997). Gametic relationship matrices (GRM) for a QTL are of
dimension 6 sites x 6 sites for the simple 3-animal pedigree shown. Elements of the GRM are
probability of identity by descent of the alleles at the prevailing pair of sites. In the GRM to the left, no
marker information is available, and, for example, probability of identity by descent between sites 4
and 6 is 0.5, as site 6 (maternal) could have inherited from sites 3 or 4 with equal probability. In the
GRM to the right, a marker with aleles A, B and C is available, and for example, probability of
identity by descent between sites 4 and 6 is 1, for the marker locus. If the QTL is linked with a
recombination fraction of 0.1, then the probability of identity by descent between sites 4 and 6 is 0.9,
for the QTL, with a 0.1 probability (in the event of recombination) for sites 3 and 6. Specia attention is
required where there is ambiguity of marker allele inheritance (Wang et al., 1995).
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You can visualise regions of identity-by-descent in the following diagram (it looks
better in colour!):
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With a good data set, the GRM gives us a lot of information for mapping. In the
diagram above, the top-left founder animal has QTL alele Q in its paternally inherited
region of haplotype (coloured red). For all its descendants, the GRM gives us
probabilities that the have inherited the same bit of DNA, holding that Q alele. We
can then simple regress their phenotypes on these probabilities to get an estimate of
the effect of Q on phenotype. Quite simple really!

The strategy is to construct a GRM (or a subset of it) for each location in the genome,

and test the goodness of fit of the resulting regression. We end up with something
like this for each chromosome:
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QTL detection with markers

Likely location
of major gene

Location of
markers

Lod score
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Here the goodness of fit isaLOD score, described elsewhere.

Detecting multiple QTL

This all works well. However, if there is more than one QTL of significant effect, we
can do better. One approach is Composite Interval Mapping. Once we are happy
about the most likely position and effect of a QTL, we fix that in the analysis — we
correct all the animal phenotypes for the most likely impact of that QTL on their
performance — and then repeat the process to look for another QTL.

This has two problems:

The estimated position of the first QTL can be influenced by the second QTL,
and vice-versa. This is especially dangerous for linked QTL. A method to
simultaneously locate the two QTL is preferable.

Life is complex — and that means that genes (or gene products) interact with
each other to produce the organisms that we all are. The value of a particular
gene variant will differ between genetic backgrounds. In some cases it will be
the weak link to achieving high merit, and in others it will not. This means
that we should ideally look for interacting sets of genes. Otherwise we could
miss some important genes — and opportunities to exploit them.
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Detecting multiple interacting QTL

We can nominate two separate positions in the genome as candidate |ocations for two
QTL. We can then construct a GRM for each position, and carry out a 2-locus
regression, as outlined below, fitting interaction effects between the two loci, as well
as additive and dominance effects within each locus.

How can we find the best fitting two positions? The following paper demonstrates an
approach that works efficiently, using a genetic algorithm:

Carlborg, O., Andersson, L. and Kinghorn, B.P. 2000. The use of a genetic algorithm for
simultaneous mapping of multiple interacting quantitative trait loci. Genetics. In Press

The genetic algorithm (GA) works by “breeding” the best solution to the prevailing
mathematical problem. In this case, the “DNA” that the GA uses is simply the
candidate positions for the two (or more) QTL. Each of these is a candidate solution
to the problem of QTL locations. Each candidate solution competes to become a
“parent” in the next generation. They compete on a criterion that is smply the
goodness of fit of these positions to the phenotypic data and pedigree on hand.

The successful “parent” solutions then combine in some way — exchanging
information, and mutate to some extent, to generate a new generation of candidate
solutions.

If thisis difficult to understand, it is because you are a geneticist, and not an engineer.
We geneticists get confused at first because the thing we want to optimise is all to do
with genetics and life becomes confusing!! If we were optimising the design of a
supersonic jet, then there would only be one set of genetic parameters to think about.

Model for fitting interacting QTL

Here is a simple one-locus model of genetic effects, similar to that found in all textsin
thisarea. 11, li and ii are the genotype values for combinations of the two alleles | and
i, misageneral mean, A isthe additive affect and D; the dominance effect at locus i.

gdl 0 amtAo
o li —: cm+ D, —
Giig &m-Ajg
We can now expand this to cater for effects at two loci. The classica statistical
approach (eg. Jana 1971) is typified as follows:

@30 113 1jjg @I +A+A+AA M+A+D +AD; MEA- A - AAD
clidd 1iJj lijje=¢m+D, +A; +AD; m+D, +D;+DD; m+D,- A - AD;+
§iid) iidj dijig gm- A+A-AA m-A+D,- AD; m- A- A +AA
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The number of parameters to handle has increased from three (m A; and D;) to nine
(m A, A;, Di, Dj, plus interaction terms AA;j, ADjj, AD;i, and DD;;). Notice that each
locus here has two alleles.

More detail is here extracted from Carlborg et al. (2000):

The objective function used was the residual sum of squared errors from a weighted least squares
approach to QTL mapping. The method is the extension of the method of Jansen (1992) to the two-loci
linear model G = m+Al +A2+D1 +D2 +AA12 +AD12 +AD21 +DD22 as indicated by the author. The
parameters of the model will be explained below. Markers have not been used as cofactors and
successive iterations in the EM algorithm have been removed to increase the computational efficiency
during the evaluation procedure. The modifications needed to the single QTL mapping procedure
described by Jansen and Stam (1994) when implementing the two QTL model included duplication of
each individua nine times (instead of three times i.e. once for every possible two-QTL genotype) and
the use of an expanded design matrix (X). The design matrix for the two-locus linear model has been
described by Jana (1971). The weight for each observation was taken to be the product of the
conditional probabilities of the single QTL-genotypes given the markers (Haley and Knott 1992) at
each of the two fitted QTL. The estimates of the model parameters can be found as:

b= (X TWX) *X"wy
sZ= (UN)(Y - X b)" W(Y - X b)

where Y is the complete data vector, X is the design matrix for the complete data, W is the diagonal

matrix of weights, b is the vector of the regression parameters, s is the normal variance and N is the
number of individuals (Jansen and Stam 1994).

The residual sums of sgquared errors can then be calculated as:
SSE = (Y -X b)" W(Y -X b)

The method described above can easily be extended to take account of background QTL in the
analysis. Two extra ga-genes are added to the genetic algorithm and two extra columns are added to the
X matrix for each background QTL. The extra ga-genes represent the chromosomal location for the
QTL and the columns in the design matrix are to contain the QTL indicator variables a and d (Haley
and Knott 1992), for a QTL at the location given by the ga-genes. The rest of the evaluation procedure
is the same as before. We have evaluated the increase in computational demand for a simultaneous
search for more than two QTL using this method, but have not investigated any other properties.

Some results

There are two advantages in this approach:

The genetic agorithm gives a fast search, saving much computer time. It
increases the computational demand by a factor of 3 to 5 when compared
to the conditional search (Carlborg et al. 2000). The improvement in
computational efficiency of the GA as compared to an exhaustive
enumerative search (looking at all pairs of locations in a genome size of
2,000 cM using aresolution of 1 cM) was by afactor 133 for two QTL. An
expansion of the search to additional dimensions by also searching for
background QTL simultaneously leads to further computational
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advantages for the GA based search. Improvements are in the order of
65,000 for three QTL and 1.7 x 10 7 for four simultaneoudly fitted QTL.

As Carlborg et al. (2000) report, the results from the simulation study with
18 QTL (Figure below) showed that the genetic agorithm based search
had higher relative efficiency to detect the simulated pair of epistatically
interacting QTL than the conditional search (ie. composite mapping
approach, as described above) for all epistatic models tested. The genetic
algorithm had a relative efficiency of 100% for al epistatic models except
for the duplicate. The conditional search had between 86 and 96% relative
efficiency for the dominant, recessive and inhibitory epistatic models and
100% relative efficiency for the complementary model. The difference in
relative efficiency for the search methods was very large for the duplicate
epistatic model, where the conditional search only had arelative efficiency
of 21%, while the genetic algorithm based search had a relative efficiency
of 93% (this could grow to 100% with better tuning of the GA
parameters). In the simulation where two interacting QTL explained al
genetic variation, both methods had a relative efficiency of 100%.
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As Carlborg etal. note: “The genetic algorithm is a general tool to search large
parameter spaces and could be of use in many other areas in QTL mapping. In this
study we have used a genetic algorithm in the search for two interacting QTL in a
cross between inbred lines, but the method can also be used for analyses of crosses
between outbred lines and in searches for more than two QTL. For analyses of
outbred lines, the genetic algorithm could aso be used when testing for QTL
segregation within the founder lines. This would be implemented by using a genetic
algorithm to group the haplotypes from the founders in allelic groups and in this way
obtain the most likely alelic constitution for the founders and other individuals in the
pedigree. This results in greater detection power because of more extreme
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probabilities of identity-by-descent of chromosomal regions between phenotyped
individuals and each founder.”

Acknowledgement:  Thanks to Orjan Carlborg*, Leif Andersson* and Brian
Kinghorn for permission to use direct quotation.

References

Carlborg, O., Andersson, L. and Kinghorn, B.P. 2000. The use of a genetic algorithm for simultaneous
mapping of multiple interacting quantitative trait loci. Genetics. In Press

Haley, C.S., and SA. Knott, 1992 A simple regression method for mapping quantitative trait loci in
line crosses using 2anking markers. Heredity 69: 315-324.

Jana, S., 1971 Simulation of quantitative characters from qualitatively acting genes. I. Nonallelic gene
interactions involving two or three loci. Theor. Appl. Genet. 41: 216-226.

Jansen, R. C., 1992 A general mixture model for mapping quantitative trait loci by using molecular
markers. Theor. Appl. Genet. 85: 252-260.

Jansen, R. C., 1993 Interval mapping of multiple quantitative trait loci. Genetics 135: 205-211.

Jansen, R. C., and P. Stam, 1994 High resolution of quantitative traits into multiple loci via interval
mapping. Genetics 136: 1447-1455.

Kinghorn, B.P. and Clarke B. E. 1997. Genetic evaluation at individual QTL. Animal Biotechnology,
8:63-68.

Wang, T., Fernando, R.L., van der Beek, S, Grossman, M. and van Arendonk, JA.M. 1995.
Covariance between relatives for a marked quantitative trait locus. Gen. Sel. Evol. 27:251-274.

98



