

The regulatory GENomE of SWine and CHicken: functional annotation during development

Aims and Outcomes of H2020 GENE-SWitCH*

Elisabetta Giuffra¹, Hervé Acloque¹ and the GENE-SWitCH consortium

(1) Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France

PAG31, Functional Annotation of Animal Genomes workshop, January 16, 2024

This project has received funding from the European Union's **Horizon 2020 Research and Innovation** Programme under the grant agreement **n**[•] **817998** (*) Jun 2019 - Dec. 2023

➢ To deliver underpinning knowledge on the pig and chicken genomes <u>and</u>,

> to enable its translation to the pig and poultry sectors

The underlying questions:

Can we identify and characterize the role of functional genomic elements – *and in particular those that are active/poised/repressed during development* – in the determination of the phenotypes of the adult animal?

What's the relative impact of their genetic variation on main production traits?

Three specific interconnected aims

WP7 (Project management and consortium coordination) WP8 (Ethics requirements)

Aim A - Functional annotations across tissues and developmental stages

INRAØ

🏰 Inserm

diagenode

INIVERSITY &

WAGENINGEN

- Identify the functional elements of chicken and pig genomes in 7 tissues across 3 developmental stages.
 - Characterize their tissue specificity and temporal dynamics ("switches")
 - Characterize their patterns of conservation and variation (mammals vs. birds).
- Deliver high-quality, richly annotated genome annotation maps open to the community.

Aim A - Dynamics of functional sequences and comparative analyses

Assay			Number of libraries		Raw reads number per library (mean)		Accession Number	
		SSC	GGA	SSC	GGA	SSC	GGA	
	ATAC-seq		84	84	100M	105M	PRJEB44468	PRJEB45945
	ChIP-seq RNA-seq	IgG CTCF H3K4me1 H3K4me3 H3K27me3 H3K27Ac mRNA-seg smallRNA-seg	78 82 80 83 83 84 84 84 84	77 78 76 81 77 84 84 84	48M 51M 95M 50M 103M 53M 15 69	58M 52M 115M 57M 126M 61M 50M	local server local server local server local server local server local server local server PRJEB41970 PRJEB42025 PRJEB42001 PRJEB42041	
	DNA methylation	RRBS	63	63	3. 59M	5M	PRJEB41822	PRJEB48060 PRJEB41829
		WGBS	21	21	36X*	31X*	PRJEB42772	PRJEB42775
	Capture Hi-C		12	12	180M	200M	PRJEB44486	local server

All raw data on <u>https://data.faang.org/GENE-</u> <u>SWitCH</u> and ENA under the terms of the Fort Lauderdale agreement and Toronto Statement.

Ex. of methylation 'switches' (PhD thesis by J. De Vos) – *papers in prep.*

Aim A - Extensions and refinement of nf-core community pipelines and new developments

TAGADA: a scalable pipeline to improve genome annotations with RNA-seq data 👌

Cyril Kurylo, Cervin Guyomar, Sylvain Foissac 🖾, Sarah Djebali 👘 Author Notes

NAR Genomics and Bioinformatics, Volume 5, Issue 4, December 2023, lqad089, https://doi.org/10.1093/nargab/lqad089

nf-core/isoseq: simple gene and isoform annotation with PacBio Iso-Seq long-read sequencing d

Sébastien Guizard ख़, Katarzyna Miedzinska, Jacqueline Smith, Jonathan Smith, Richard I Kuo, Megan Davey, Alan Archibald, Mick Watson

Bioinformatics, Volume 39, Issue 5, May 2023, btad150, https://doi.org/10.1093/bioinformatics/btad150

GSM pipeline (bisulfite sequencing data) from extension of nf-core methyl-seq pipeline (De Vos et al. in prep.)

Github links for all assays' pipelines available on <u>ttps://data.faang.org/GENE-</u> <u>SWitCH</u>

Aim A- A first Ensembl Regulatory Build for pig and chicken (jungle fowl, a broiler and a white leghorn) genomes

Ensembl 2024 👌

Peter W Harrison ➡, M Ridwan Amode, Olanrewaju Austine-Orimoloye, Andrey G Azov Matthieu Barba, If Barnes, Arne Becker, Ruth Bennett, Andrew Berry, Jyothish Bhai ... Show more

Nucleic Acids Research, Volume 52, Issue D1, 5 January 2024, Pages D891–D899, https://doi.org/10.1093/nar/gkad1049

Ensembl Release 111 (Jan 2024) relabeled some annotated regions as enhancers based on their overlap with relevant histone ChIP-seq peaks

Aim B. Using functional annotation for precision animal breeding

Two different approaches:

Can functional annotations enhance the prediction accuracy of breeding values in commercial populations? Provide a basis for future studies focused on better farm management (e.g. using lowerquality, more sustainable feed)

> Presented at Cattle/Swine workshop, Sat. 14 Jan

WP4: Improving predictive models for genomic selection

WAGENIN

Aim:

Extend genomic prediction models to exploit new annotation maps of pig and chicken generated in GENE-SWitCH.

Achieved by:

- Developing new genomic prediction models.
- Generating fine-mapped QTL and eQTL.
- Validating the models in large scale commercial data.

Next talk by Derek Bikhart

Aim C - Standardization of data and processes (WP3), dissemination and outreach (WP6)

- Coordination, standardisation, validation, curation and archiving of GENE-SWitCH data
- Clustering activities with the other H2020 projects = start of EuroFAANG
- Enabling use of produced knowledge to improve the effectiveness of genomic selection in the pig and poultry sectors
- Implement training and capacity building activities for both academics and industry stakeholders

Aim C - Some testimonials from stakeholders (from: Stakeholder panel at GENE-SWitCH 4th AM, Rome, June 2023)28

"The GENE-SWitCH project represents a critical milestone in advancing animal breeding through functional annotation and genomics" **(FAO)**

"The outcomes of this project have the potential to impact food security significantly." (FAO)

"We can use the functional annotation data from GENE-SWitCH to reduce environmental load and mortality as well as increase animal health and welfare." (attending breeding companies)

"The task of establishing a connection between genotype and phenotype poses a significant challenge. Fortunately, functional annotation is a valuable tool in guiding breeding companies towards addressing this issue." **(attending breeding companies)**

All about GENE-SWitCH is here: https://www.gene-switch.eu/

BOOK OI

ABSTRACTS

GO TO THE FINAL CONFERENCE PAGE

WATCH THE VIDEOS OF THE FINAL CONFERENCE

A "final" big thanks to all participants and FAANG/EuroFAANG collaborators

Final conference, Brussels 6-8 Nov. 2023

This project has received funding from the European Union's **Horizon 2020 Research and Innovation** Programme under the grant agreement **n**° **817998**

www.gene-switch.eu