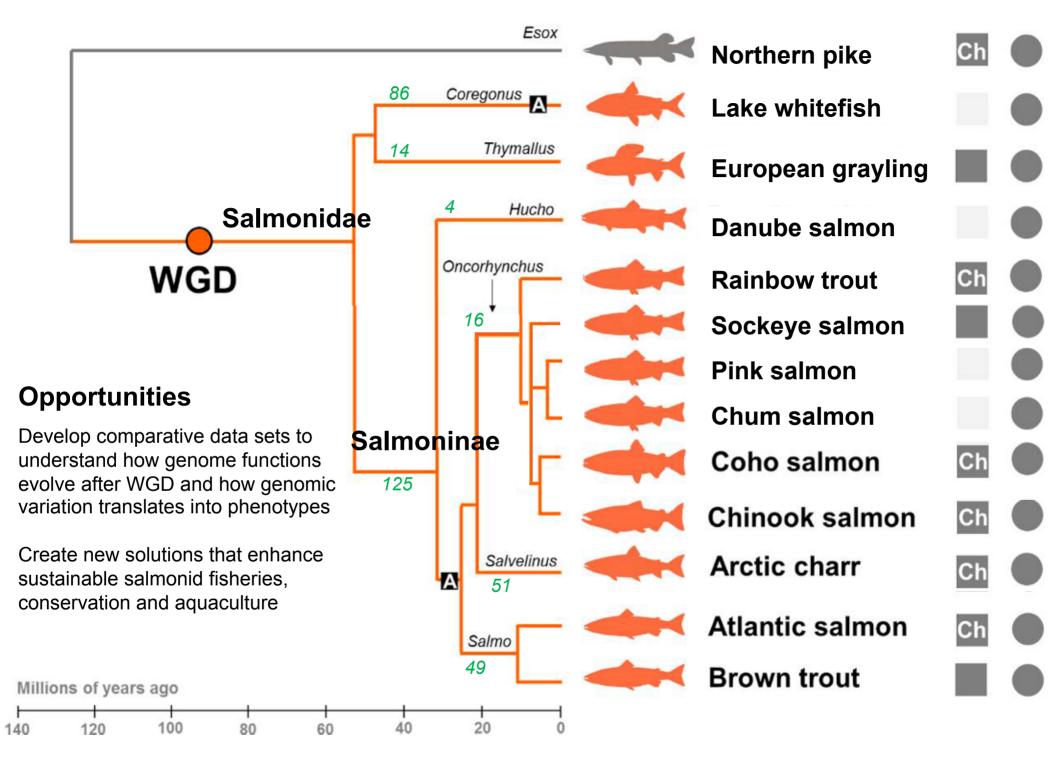

Functional Annotation of All Salmonid Genomes (FAASG)

Approach: Coordinate the international salmonid community to acquire, standardize and share data for comprehensive mapping and characterization of the functional elements of salmonid genomes.

Salmonid Fisheries and Aquaculture


<u>Wild fisheries</u> – commercial capture of all wild salmon species <u>FAO</u>

Aquaculture production of all salmon species <u>FAO</u>

```
2016 – $15B AS
```

Scientific Publications by Fish Species and Subject

Subject Area <i>Publications</i> (1900-2016)	Salmonids	Catfish	Halibut & Flounder	Atl. Cod & Haddock / Hake	Tuna & Mackerel	Carp	Tilapia & Cichlids	Zebrafish	Stickleback	Medaka
Total	101k	17.6	11.9	18.2	11.3	32.2	16.3	35.0	4.8	6.3
Fisheries	34.1	5.8	4.7	6.5	3.4	6.9	4.2	1.1	0.6	0.5
Marine/FW Biology	24	3.3	3.9	6.3	2.5	4.8	3.0	1.6	0.9	0.8
Zoology	9.7	2.7	1.0	1.0	0.6	3.3	3.0	2.3	1.4	0.9
Biochemistry	9.7	1.5	1.1	1.2	0.6	2.6	1.5	5.6	0.3	0.9
Environment	9.9	1.2	1.0	0.8	0.6	2.3	1.0	1.7	0.2	1.0
Toxicology	7.4	1.0	0.8	0.4	0.2	1.5	0.7	2.5	0.1	1.2
Ecology	6.4	0.7	0.6	1.8	0.7	1.5	1.4	0.2	1.4	0.1
Food Science										
Technol.	3.8	0.8	0.3	1.8	2.1	0.9	0.6	0	0	0
Immunology	3.4	0.9	0.6	0.3	0.1	1.4	0.3	0.9	0	0.1
Genetics	2.9	0.5	0.3	0.3	0.1	1.2	0.9	3.3	0.6	0.7
Cell Biology	2.0	0.3	0.3	0.2	0.1	0.6	0.3	4.5	0.1	0.6
Agriculture	1.2	0.3	0.1	0.0	0.3	0.5	0.4	0.1	0	0
Development	0.8	0.1	0.0	0.0	0.0	0.2	0.2	7.1	0.1	0.7
Conservation	1.1	0.3	0.1	0.2	0.1	0.3	0.1	0	0.1	0
Est Value US\$, 2006										
(fisheries +aquaculture)*	12.3B	0.4B	2.8B	6.1B	10.5B	19.5B	3.5B			
Est MT*	3	0.6	1.0	6.1	6.5	21.2	3.1			

species: FishBase 225 total

EDITORIAL

Functional Annotation of All Salmonid Genomes (FAASG): an international initiative supporting future salmonid research, conservation and aquaculture

Daniel J. Macqueen^{1*}, Craig R. Primmer^{2*}, Ross D. Houston^{3*}, Barbara F. Nowak^{4*}, Louis Bernatchez⁵, Steinar Bergseth⁶, William S. Davidson⁷, Cristian Gallardo-Escárate⁸, Tom Goldammer⁹, Yann Guiguen¹⁰, Patricia Iturra¹¹, James W. Kijas¹², Ben F. Koop¹³, Sigbjørn Lien¹⁴, Alejandro Maass^{15,16}, Samuel A. M. Martin¹, Philip McGinnity¹⁷, Martin Montecino^{18,19}, Kerry A. Naish²⁰, Krista M. Nichols²¹, Kristinn Ólafsson²², Stig W. Omholt^{14,23}, Yniv Palti²⁴, Graham S. Plastow²⁵, Caird E. Rexroad 3rd²⁶, Matthew L. Rise²⁷, Rachael J. Ritchie²⁸, Simen R. Sandve¹⁴, Patricia M. Schulte²⁹, Alfredo Tello³⁰, Rodrigo Vidal³¹, Jon Olav Vik¹⁴, Anna Wargelius³², José Manuel Yáñez³³, The FAASG Consortium

FAASG Vision:

To provide solutions for salmonid conservation, sustainable fisheries, and aquaculture through an improved understanding of salmonid biology.

FAASG Mission:

To coordinate the salmonid community to standardize and share data for comprehensive mapping of the functional elements of salmonid genomes.

Core Principles

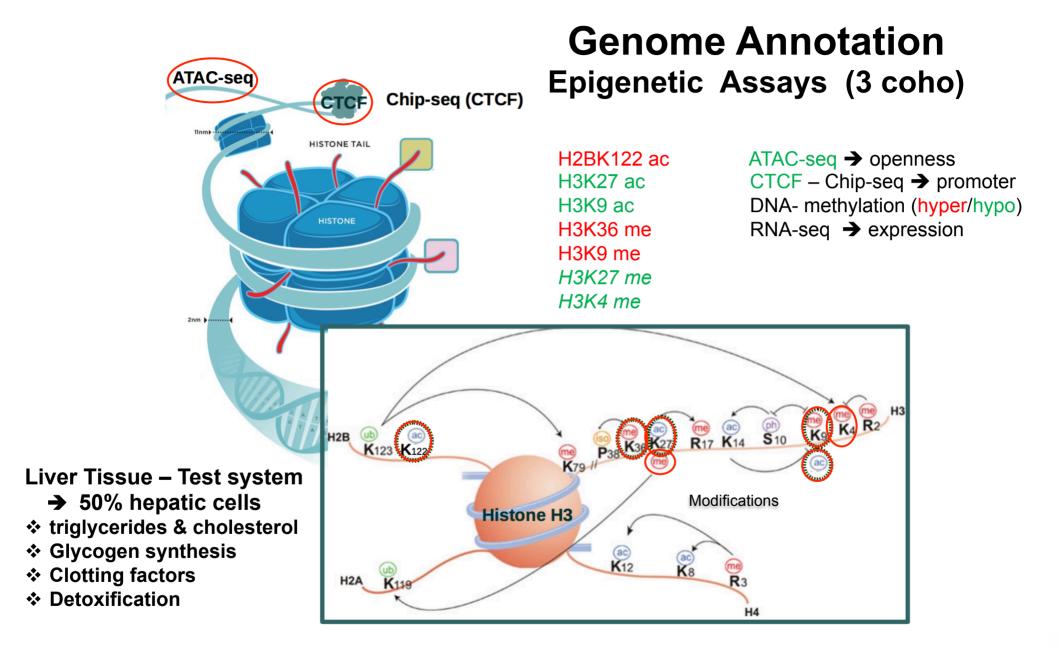
To understand the functional elements of all salmonid genes and genomes.

Modeled on principles agreed on by similar initiatives including <u>FAANG and ENCODE including</u>:

- > Collaboration to define experimental, meta data, and bioinformatics standards
- Ensuring experiments conducted adhere to agreed standards
- > Timely and open access release of data

	FAANG	FAASG		
Initiated	2013	2016		
Focus	Terrestrial animals (commercial)	Salmonids (industry and conservation)		
Lead Countries	USA / Scotland / France	Canada / Norway / USA / Scotland		
White Paper	2015	2017		
Governance/ Working Groups	Yes	Yes		
Core Assays	Yes	in progress		
Metadata	Yes	in progress		
Bioinformatics	Yes	in progress		
Phenotypes	Yes	in progress		
Funding	Core funding for Infrastructure (EU) and (ad hoc) project funding	ICSASG, National funds, and possibly EU funds		
Origin	Community driven	ICSASG (funder) driven		

Metadata


BioInf

Phe

Table 1. Levels of genome-wide functional annotation within the FAASG framework

Class of variation	Context	Origin of data	Goal	
Genomic sequence	Phylogeny-wide	Comparative analysis	Define fixed substitutions across species including for WGD gene duplicates. Assign to different classes: exonic, intronic, regulatory, synonymous vs. non-synonymous; radical vs. conservative non- synonymous and divergent from ancestral state Identify differences in structural genomic variation among species and describe its evolution Associate sequence/structural genome variation with epigenetic, transcriptomic and proteomic variation	
Genomic sequence	Population-level	Genome-resequencing	Define SNPs and structural genome variation within species. Assign to different classes: as above Associate sequence/structural genome variation with epigenetic, transcriptomic and proteomic variation	
Epigenetic (DNA methylation)	Phylogeny-wide and population level	Assays described in Table S1.	Generate DNA methylome maps and define their regulation across tissues, developmental stages and common-garden physiological manipulations Associate changes in methylation with all forms of genomic, transcriptomic, proteomic and other classes of epigenetic variation	
Epigenetic (histone modifications)	Phylogeny-wide and population level	Assays described in Table S1	Define a range of histone marks and their regulation across tissues, developmental stages and common-garden physiological manipulations Associate variation in histone marks with all forms of genomic, transcriptomic, proteomic and other classes of epigenetic variation	
Epigenetic (chromatin biology)	Phylogeny-wide and population level	Assays described in Table S1	Generate maps of DNA accessibility and define their regulation across tissues, developmental stages and common-garden physiological manipulations Associate changes in chromatin structure with all forms of genomic, transcriptomic, proteomic and other classes of epigenetic variation	
RNA expression	Phylogeny-wide and population level	RNAseq - potentially stranded protocols (see Table S1)	Define expression of miRNA, mRNA and non-coding RNA across adult tissues, developmental stages and common-garden physiological manipulations ¹ Associate transcriptomic variation to all forms of genomic, epigenetic and proteomic variation	
Protein level	Phylogeny-wide and population level	Various possible mass spectrometer platforms – bottom up approach	Define proteome across tissues, developmental stages and common-garden physiological manipulations Associate proteomic variation to all forms of genomic, transcriptomic and epigenetic variation	

Regulation of chromatin by histone modifications <u>Andrew J Bannister</u> & <u>Tony Kouzarides</u> *Cell Research* (2011) **21**, 381–395 & Liwang_Cui2/publication/44583139/figure/fig1/AS:2775704

FAASG models - what are the priorities and challenges?

Tissue 'Atlas' – underpinning baseline to many phenotypes. Challenges include heterogeneity in cell-type, standardizing effects of

ontogeny across species, choice of populations/strains ...

Developmental 'Atlas' – underpinning to later phenotypes.

Challenges include standardizing across species (easiest during embryogenesis), and loss of tissue-specific signal ...

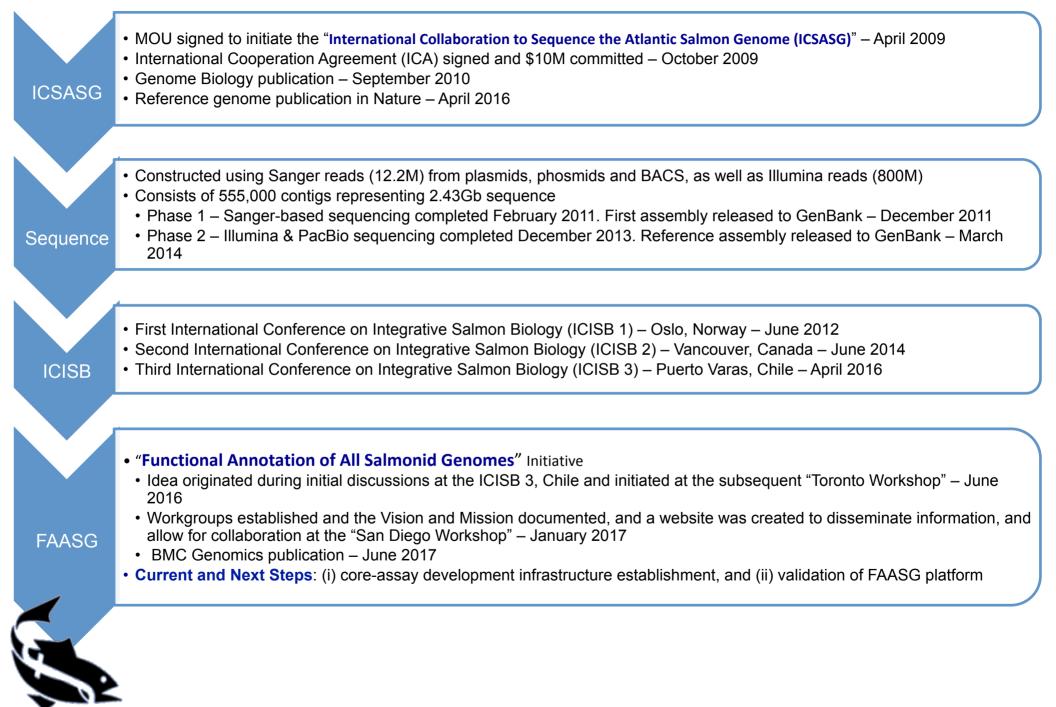
Immune 'Atlas' – potential to do standardized challenges with immune mimics. Issues and ideas?

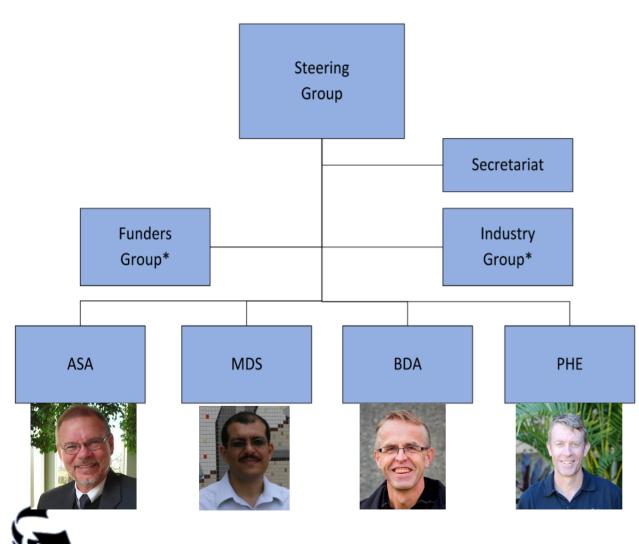
Clonal and selected strains – reduced effect of genetic variation and shifted phenotypes (e.g. disease resistance)

Life-stage transitions – sexual maturation and smoltification. Many challenges in terms of standardization across studies.

Cell lines and primary cell cultures – benefits for core assays. Functional manipulations possible

Supporters





FAASG.org

Historical Overview

Governance and Operations Structure

Working Groups

- Animals, Samples and Assays (ASA)
- Bioinformatics and Data Analysis (BDA)
- Metadata and Data Sharing (MDS)
- Phenotyping (PHE)
- Steering Group
- Secretariat
- Funders still to be established
- Industry still to be established

FAANG core assays	Assay target	Example related assays used in salmonids; assay target		
Transcribed loci				
RNA-sequencing, stranded protocols [52, 68]	Transcriptome, strand polarity retained	RNA-seq, stranded protocol; transcriptome [69] RNA-seq; double stranded; transcriptome [65-67] RNA-seq; double stranded, miRNA [70] RNA-seq; double stranded; Long non-coding RNA [71] RNA-seq; double stranded; Large intergenic non-coding RNAs [72]		
Chromatin accessibility and archi	tecture			
Assay for transposase-accessible chromatin sequencing (ATAC-seq) [[57, 73]	Regions of open chromatin, localization of nucleosomes in regulatory sites and positions of DNA-binding proteins	No published examples		
DNasel footprinting [58]	Open chromatin, delineate genomic regulatory compartments	No published examples		
Chromatin immunoprecipitation sequencing (ChiP-seq)	Proteins linking genome architecture to function (FAANG- highly conserved insulator-binding factor, CTCF) [74]	No published examples		
Histone modification marks				
Chromatin immunoprecipitation sequencing (ChiP-seq) to detect modified histones and characterize associated sequences [59]	 Histone H3 lysine 4 trimethylation (H3K4me3), identifies active gene promotors and is enriched at transcription start sites Histone H3 lysine 27 trimethylation (H3K27me3), marks genes that have been facultatively repressed through regional modification Histone H3 lysine 27 acetylation (H3K27ac), marks active regulatory elements, may discriminate active from inactive enhancers and promoters H3 lysine 4 monomethylation (H3K4me1), marks enhancers and other distal elements, and is enriched downstream of transcription start sites 	Chromosome immune precipitation; relationship between modified histones and gene expression [75]		
Additional FAANG Assays	Assay target	Related assay used in salmonids; assay target		
DNA methylation, genome-wide analysis of 5-methylcytosines, nucleotide level resolution [55]	Epigenetic mark and regulator of gene expression	Methyl-sensitive AFLP, global methylation changes [76-79] Bisulphite sequencing, nucleotide-level resolution [80]		
ChiP-seq assays [62] for sequences bound by specific proteins	Transcription factor binding sites	Chromosome Immune Precipitation Assay, regulation of transcription [81-83]		
Genome conformation; Hi-C [61, 84] for chromosomal conformation capture	Identify distal chromatin elements that are brought together through 3D chromosomal folding	No published examples		