FAANG workshop, PAG XXIV – San Diego, 11 Jan. 2016

Animals/Samples/Assays (ASA) Committee

Elisabetta Giuffra¹ & Huaijun Zhou²

¹GABI, INRA, AgroParisTech, Université Paris Saclay - Jouy en Josas, France

²University of California, Davis - Davis, CA, USA

Animals/Samples/Assays (ASA) Committee

Aims:

- Propose, develop and standardize animal/tissue collection protocols, storage practices, and assay protocols for the FAANG community ('pilot projects').
- Foster collaborations, avoid redundancies and enhance synergies
- Presently: ~70 members
- <u>faang-samples@animalgenome.org</u>

faang.org (and FAANG Wiki)

Workshop at PAG XXIV – San Diego, 11 Jan. 2016

ASA Committee report: a focus on chromatin assays

Process tissues/primary cells using well-established and more informational assays (Andersson et al. 2015; PMID: 25854118)

 Most chromatin assays require optimization: soft vs. hard tissues, fresh vs. frozen, etc.
 preliminary results of pilot projects: France and US

Workshop at PAG XXIV – San Diego, 11 Jan. 2016

ASA Committee report: 3 speakers

Andersson et al. 2015; PMID: 258	DNAse-seq and ChIP-seq analysis of farm						
	animal tissues						
Core Assays	Pablo Ross, UC-Davis						
∴ Transcribed loci. ♦ RNA-seq (exhaustive catalogues)	of gene /ncRNAs expression)						
	5 1 /						
2. Chromatin Accessibility and A	rehitecture:						
DNAse hypersensitivity (DNase I-	-seq) and possibly ATAC-seq (Transposase-Accessible						
Chromatin with high-throughput sec							
3. Histone modification marks (up	Measuring Chromatin Accessibility using ATAC-						
H3K4me3 (promoters of active g	seq: preliminary results on porcine tissues/cells						
✤ H3K27me3 (genes that have bee	, bee Kylie Munyard, INRA - P0420						
✤ H3K27Ac (active regulatory elements)							
H3K4Me1(regulatory elements a	Functional annotation of livestock genomes						
enriched downstream of transcrip	using Hi-C: preliminary results on porcine						
	tissues/cells						
Additional Assays	Herve Acloque, INRA - P0421						
DNA methylation Chromosome conformation capture (by Hi-C: genome-wide interactions in 2D)							
	State (by The S. genome-wide interactions in SD)						

Workshop at PAG XXIV – San Diego, 11 Jan. 2016

unctional Annotation

DNase-seq and ChIP-seq analysis of farm animal tissues

Pablo J. Ross

Associate Professor

University of California Davis

DNase-seq

Profile DNase I hypersensitivity sites across the whole genome Active DNA elements (promoters and enhancers) are more accessible to DNase I digestion than the rest of the genome DNase I sites = regulatory regions

Workflow and critical considerations

Nuclear integrity and correct quantification is critical Cell culture>tissue freshly isolated nuclei>frozen tissues DNase I concentration is critical, tissue/sample dependent

Libraries are sequenced at low level first, and amplified to >50 million reads/sample if good

Optimal nuclei isolation is tissue dependent

Results from UC Davis samples run at Stam Lab - University of Washington

Chicken samples processed by Dnase-seq

	Adipose	Cerebellum	Cortex	Hypothalamus	Liver	Lung	Muscle	Spleen	12 successful
Bird A									libraries
Bird B									22 failed
Reads	29,236,452	107,520,255	42,946,606	59,644,084	93,681,598	79,033,732	26,730,117	237,834,942	libraries

Cerebellum GO Biological Process Terms

Fold Enrichment

ChIP-seq

Identify areas of the genome associated with specific proteins Histone modifications demarcate functional elements in the genome Mapping histone modifications = Mapping functional genomic areas

H3K4me3	Active promoters
H3K27me3	Inactive chromatin
H3K4me1	Active enhancers
H3K27ac	Active promoters and enhancers
CTCF	Boundary element

Chromatin Fixation and Shearing

Diagnode IDeal ChIP-Seq Kit, Covaris S2 system. NEB library preparation kit

qPCR Confirmation of ChIP Enrichment-H3K4me3

- % recovery = 2^{(Ct}_{input} Ct_{sample})
- Expected >5% considered successful enrichment

H3K4me3 qPCR Validation

Raw ChIP-Seq Reads

	H3K4me3	H3K27me3	Control
Cerebellum	41,023,866	45,384,874	42,692,478
Cortex	49,805,512	47,458,518	76,985,076
Hypothalamus	64,159,608	71,047,968	83,411,580
Liver	49,061,112	76,310,510	66,759,934
Lung	44,510,256	42,373,494	60,945,834
Spleen	36,701,468	49,291,330	73,482,690

Aligned and Filtered ChIP-Seq Reads from Chicken

	H3K4me3	H3K27me3	Control
Cerebellum	24,331,529	26,132,801	27,935,330
Cortex	35,745,439	20,781,566	56,091,853
Hypothalamus	42,025,119	48,644,786	60,546,445
Liver	29,485,908	35,850,744	51,835,760
Lung	33,971,248	30,219,806	51,907,342
Spleen	28,553,718	37,290,417	44,115,980

Global Project Current Progress

Genome-wide identification and annotation of functional regulatory regions in livestock species

- H. Zhou, P. Ross, I. Korf, UC Davis
- Collaborators:
 - Poultry Genome Coordinators: M. Delany, H. Cheng
 - Cattle Genome Coordinators: J. Medrano, A. Van Eenennaam
 - Swine Genome Coordinators: C. Tuggle, C. Ernst
 - V. Leesburg, USDA ARS
 - Jim Kent, UCSC
 - Laura Clarke, Paul Flicek, EBI
 - Bin Ren, UCSD
- Postdocs and students
 - Colin Kern
 - Ying Wang
 - Perot Saelao
 - Michelle Halstead

Financial support:

grant #2015-67015-22940

Poultry, Cattle, Swine	
Genome Coordination Fund	9

Measuring Chromatin Accessibility using ATAC-seq: preliminary results on Porcine tissues/Cells

- ATAC-seq: Assay for Transposase Accessible Chromatin by sequencing
- One important aspect of functional control of mammalian genomes is chromatin accessibility
- ATAC-seq is an emerging method for measuring chromatin accessibility
- It's advantages over other such methods (e.g. DNaseseq) are that:
 - It requires fewer cells (50,000)
 - It is fast and simple

Adapted from: www.illumina.com/techniques

ATAC-sea

	 Liver, spleen, CD3+CD4+, & CD3+CD8+ T-cells from 2 ♂& 2 ♀ Large White pigs
Samples	 Liver, spleen, CD3+CD4+, & CD3+CD8+ T-cells from 1 Melanoma- bearing Libechov Minipig (MeLiM)
	 GM12878 Human Lymphoblastoid cell line
ATAC-sea	 Transposition in vitro on fresh (liver, spleen) or thawed (CD4/8+) samples (Buenrostro et al. 2015, Curr. Prot. Mol. Biol. 109:21.2)
Libraries	 Removal of primers & adaptors (AMPureXP)
	 Illumina HiSeq 3000, 150bp, PE
Sequencing	 6 libraries (MeLiM: Liver, spleen x 2, CD3+CD4+, & CD3+CD8+ T-cells, & GM12878) pooled in one lane
	 Adaptors trimmed (Trimgalore)
Analysis	 Mapped to reference (Bowtie2)
Pipeline	 Duplicates Removed (Picard-Tools)
	 Mitochondrial reads removed (Samtools)
	 Peaks called (MACS2)
INRA	PAG 2016: FAANG Workshop, San Diego January 2016

Preliminary Results: Pig Samples Library Fragment Size Distribution

Mapping & Filtering

Sample Type	Liver	Spleen	Spleen (NH ₄ Cl)	CD4	CD8	GM12878	GM12878 (Buenrostro)
% MT reads in Q10 mapped	39.4	0.6	7.2	9.4	21.7	64.9	55.8

Distribution of Peaks in Genomic Features

Preliminary Results: Conclusions

- ATAC-seq library preparation was successful on all initial samples
 - Liver, spleen, CD4+ and CD8+ MeLiM pig primary cells/ tissues
 - NH₄Cl treatment had a large effect
- Results are consistent with published data
 - GM12878 vs. Buenrostro GM12878 and DNase-seq GM12878
 - Mitochondrial reads more problematic in cell lines
 - Evaluation of results ongoing
- Low coverage (probably) led to reduced peak numbers
 - Peaks in the human cell line were consistent with published data
 - Indication of different peak patterns in different tissues

The Fr-AgENCODE ATAC-seq team

Roadmap for 2016:

1st semester:

- Additional sequencing of these libraries
- Complete analysis
- Complete libraries & sequencing for target samples:
- pigs, chicken and goats
- Liver, CD4+, CD8+ cells

2nd semester:

Start data analysis on target samples & integration with Hi-C and whole transcriptome data

Molecular Biology

Elisabetta Giuffra Adeline Goubil Diane Esquerré

Blood cells (for pig)

Silvia Vincent-Naulleau

Bioinformatics

Kylie Munyard Sylvain Foissac Sarah Djebali

Fr-AgENCODE coordination Elisabetta Giuffra & Sylvain Foissac

Hi-C for Fr-AgenCode: Profiling the Nuclear Spatial Conformation of Livestock Genomes in Cell Lines and Liver Cells

Brief reminder of the Hi-C proposal within the Fr-AgEncode Project:

4 Species (chicken, pig, cattle, goat)
4 Animals/species (2 males and 2 females)
1 Tissue for each animal: Liver

16 different maps of DNA-DNA interactions

A minimal resolution of 100kb for each map (with at least 1000 contacts for each 1Mb bin) For a 3Gb mammalian genome, to reach a 50-100kb resolution: 70M of paired-reads/library

Protocol adapted from *in situ* Hi-C developed by the group of Lieberman-Aiden, Rao et al. 2014

Hi-C for Fr-Agencode: Profiling the Nuclear Spatial Conformation of Livestock Genomes in Cell Lines and Liver Cells Hervé ACLOQUE

Why did we decide to include Hi-C assays for Fr-AgenCode?

Resolution	Over 25kb	25kb	5kb and under
Chromatin compartments (open and repressive)	yes	yes	yes
Chromatin sub- compartments (TAD and contact domains)	no	yes	yes
Chromatin Loops	no	no	yes
Promoter/enhancer detection	no	no	yes

adapted from Rao et al. 2014

Hi-C for Fr-Agencode:Profiling the Nuclear Spatial Conformation of Livestock Genomes in Cell Lines and Liver Cells Hervé ACLOQUE

Hi-C for Fr-Agencode: Profiling the Nuclear Spatial Conformation of Livestock Genomes in Cell Lines and Liver Cells Hervé ACLOQUE

Hi-C for Fr-AgenCode: tested tissues

Working on :

Cell lines (mouse fibroblasts and pig iPSCs) Pig tissues: fresh and snap frozen liver fresh and snap frozen skeletal muscle

on going: chicken and cow fresh liver

Hi-C for Fr-Agencode: Profiling the Nuclear Spatial Conformation of Livestock Genomes in Cell Lines and Liver Cells Hervé ACLOQUE

Hi-C for Fr-AgenCode: Increasing the yield of valid pairs of reads

mouse STO cells

pig muscle

Optimizing Ligation time and biotin removal at the extremities.

Hi-C for Fr-Agencode: Profiling the Nuclear Spatial Conformation of Livestock Genomes in Cell Lines and Liver Cells Hervé ACLOQUE

Hi-C for Fr-AgenCode: First low-resolution liver/muscle interaction maps

chr2: Liver

chr2: Muscle

Poster 0421: Sylvain Foissac

Hi-C for Fr-Agencode: Profiling the Nuclear Spatial Conformation of Livestock Genomes in Cell Lines and Liver Cells Hervé ACLOQUE

The Fr-AgENCODE Hi-C team

Roadmap for 2016:

1st semester:

16 Liver libraries and sequencing for cows, pigs, chicken and goats

Comparison of pig muscle and liver 50kb resolution maps (INTERPIG project, INRA)

2nd **semester:** Analysis and comparison of liver maps

Molecular biology

Florence Mompart Diane Esquerré Maria Marti

Bioinformatics

Sylvain Foissac Sarah Djebali

Biostatistics David Robelin Magali San Cristobal Matthias Zytnicki

Fr-AgENCODE coordination Elisabetta Giuffra & Sylvain Foissac

Hi-C for Fr-Agencode:Profiling the Nuclear Spatial Conformation of Livestock Genomes in Cell Lines and Liver Cells Hervé ACLOQUE